BACCALAURÉAT TECHNOLOGIQUE

Série : Sciences et Technologies de Laboratoire

Spécialité : Biotechnologies

SESSION 2014

Sous-épreuve écrite de Biotechnologies

Coefficient de la sous-épreuve : 4

Ce sujet est prévu pour être traité en deux heures.

Les sujets de CBSV et de biotechnologies seront traités sur des copies séparées.

L'usage de la calculatrice est autorisé.

Ce sujet comporte 7 pages.

14BIOPO1 Page : 1/7

DOSAGE ET ÉLIMINATION D'UN POLLUANT DE L'EAU

Certaines formes d'agriculture conduisent à une pollution des sols et des eaux souterraines par utilisation de nombreux produits phytosanitaires.

L'atrazine est un herbicide qui a été largement utilisé entre 1960 et 2001. Malgré l'interdiction d'utilisation en France à partir de 2003, l'atrazine reste l'herbicide le plus présent dans les eaux souterraines.

La valeur sanitaire maximale pour l'atrazine dans l'eau destinée à la consommation humaine est de 0,1 µg.L⁻¹ en Europe.

Une société d'exploitation d'eau potable souhaite distribuer une nouvelle eau de source souterraine. Elle charge un laboratoire de vérifier sa qualité sanitaire et de tester un procédé de dépollution.

Ce procédé utilise une souche microbienne de *Pseudomonas* sélectionnée dans le but de dégrader les molécules polluantes dont l'atrazine.

Pour cela, le laboratoire réalise :

- un dosage de la molécule d'atrazine dans l'eau de source ;
- une étude de la capacité de la souche de Pseudomonas sélectionnée à dégrader l'atrazine;
- une étude de l'influence de la température sur la biodégradation de l'atrazine par Pseudomonas.

1. DOSAGE DE L'ATRAZINE DANS L'EAU DE SOURCE PAR UNE MÉTHODE IMMUNO-ENZYMATIQUE

L'atrazine est dosée par une méthode immuno-enzymatique de type ELISA décrite dans le **document 1**.

- Q1. A partir de l'analyse du mode opératoire, identifier le rôle :
 - de chacun des différents temps d'incubation (étapes 2, 5 et 8);
 - de chacun des différents lavages (étapes 3 et 6).
- **Q2.** Schématiser l'édifice moléculaire présentant les différentes molécules et leurs interactions, obtenu après la dernière incubation dans un puits positif.
- Q3. Choisir la longueur d'onde de travail pour doser le produit jaune formé et argumenter ce choix.

Dans cette technique ELISA, l'absorbance mesurée est proportionnelle à la concentration massique d'atrazine de l'essai. Les résultats de l'expérience sont donnés dans le **document 1**.

- **Q4**. Déduire l'équation aux grandeurs et aux unités permettant de calculer la concentration massique en atrazine ρ (atrazine ; eau de source) en μ g.L⁻¹ de l'échantillon d'eau de source non diluée.
- **Q5.** Donner l'équation aux valeurs numériques et calculer ρ (atrazine ; eau de source) dans l'eau analysée avec une incertitude élargie U = 0,30 μ g.L⁻¹.
- **Q6.** Conclure quant à la qualité sanitaire de cette eau de source concernant l'atrazine.

2. ETUDE DE LA CAPACITÉ DE LA SOUCHE DE *PSEUDOMONAS* SÉLECTIONNÉE À DÉGRADER L'ATRAZINE

Afin de déterminer si une souche sélectionnée de *Pseudomonas* est capable d'utiliser l'atrazine, des tests sont réalisés. Les résultats sont donnés dans le **document 2**.

14BIOPO1 Page : 2/7

- **Q7.** Classer les constituants du milieu de base (M) en deux catégories : source de carbone ou source d'éléments minéraux. Présenter ce classement sous forme d'un tableau.
- **Q8.** Analyser les résultats des expériences 1 et 2. En déduire le rôle des peptones.
- **Q9**. Analyser l'expérience 3 et expliquer le comportement de *Pseudomonas* vis-à-vis de l'atrazine. Argumenter l'intérêt du choix de cette souche pour le traitement des eaux.

3. ETUDE DE L'INFLUENCE DE LA TEMPÉRATURE SUR LA BIODÉGRADATION DE L'ATRAZINE PAR LA SOUCHE DE *PSEUDOMONAS* SÉLECTIONNÉE

3.1. Vérification du stock de cellules congelées de la souche de Pseudomonas

Le laboratoire dispose de stocks de souches congelées directement utilisables pour ensemencer le bioréacteur. Afin de démarrer la croissance dans de bonnes conditions, une concentration bactérienne minimale de 2,0.10⁸ UFC.mL⁻¹ est nécessaire. Avant chaque inoculation, une évaluation de la concentration bactérienne du stock est réalisée par une technique de dénombrement en surface sur gélose PCA.

La réalisation de ce dénombrement et les valeurs obtenues sont présentées sur le document 3.

- **Q10.** Etablir l'équation aux valeurs numériques et calculer la concentration en nombre, notée $N_{UFC\ Pseudomonas}$, exprimée en UFC.mL⁻¹ du stock décongelé de *Pseudomonas*.
- Q11. Conclure sur le stock testé.

3.2. Influence de la température sur la croissance de la souche de Pseudomonas

Afin d'étudier l'efficacité et les possibilités permettant de diminuer les coûts de traitement, deux températures d'incubation ont été testées : 12°C qui est la température moyenne des eaux souterraines à traiter et 30°C qui est proche de la température optimale de croissance de *Pseudomonas*. Maintenir une température de 30°C implique un coût énergétique pour l'entreprise. Les courbes de croissance obtenues ainsi que l'évolution de la quantité d'atrazine dans les bioréacteurs sont présentées dans le **document 4**.

- Q12. Comparer les deux courbes de croissance.
- Q13. Reproduire et compléter le tableau ci-dessous sur la copie, en expliquant la démarche.

Température de l'expérience		à 12°C	à 30°C
Pourcentage d'atrazine présente dans le bioréacteur	après 30 h		
	après 60 h		
Pourcentage d'atrazine dégradée par Pseudomonas	après 30 h		
	après 60 h		

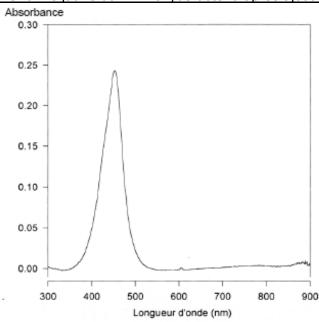
Q14. A partir des réponses apportées en Q12 et Q13, proposer une température à utiliser dans le cadre de la dépollution des eaux par la souche de *Pseudomonas* sélectionnée. Argumenter le choix.

SYNTHESE

Q15. Présenter une synthèse de l'étude menée par le laboratoire afin de permettre la mise en exploitation de l'eau de source.

14BIOPO1 Page : 3/7

DOCUMENT 1: Dosage de l'atrazine par la technique ELISA Sandwich


Le principe de base des tests ELISA repose sur une interaction spécifique entre un antigène et un anticorps. Ici, l'atrazine est l'antigène.

Mode opératoire du dosage ELISA Sandwich:

Les anticorps anti-atrazine sont fixés à la surface des puits d'une microplaque.

- 1- Remplir un puits avec l'échantillon dont on veut déterminer la concentration en atrazine (essai) et un autre puits avec de l'atrazine en concentration connue (C_{m atrazine solution étalon} = 0,12 μg.L⁻¹)
- 2- Incuber 30 minutes à 37°C.
- 3- Laver les puits au tampon PBS.
- 4- Ajouter en excès le conjugué, c'est-à-dire l'anticorps anti-atrazine couplé à une enzyme (la peroxydase).
- 5- Incuber 30 minutes à 37°C.
- 6- Laver les puits au tampon PBS.
- 7- Ajouter le substrat de l'enzyme, H₂O₂, du TMB (tétraméthylbenzidine) qui en présence de l'enzyme est oxydé en un produit coloré bleu.
- 8- Incuber 20 minutes à 37°C.
- 9- Stopper la réaction enzymatique en ajoutant de l'H₂SO₄. Le produit se colore en jaune.
- 10- Mesurer l'absorbance dans les puits à une longueur d'onde (λ) appelée longueur d'onde de travail.

Spectre d'absorption de la forme jaune du TMB oxydé obtenu après ajout d'H2SO4

Valeurs obtenues pour l'ELISA

La procédure ayant été validée au préalable, les valeurs obtenues pour l'étalon et pour l'essai (échantillon d'eau de source **dilué au 1/10**) sont les suivantes :

	Etalon	Essai
Concentration massique $ ho_{(atrazine~;~échantillon)}$ en μ g.L $^{ ext{-1}}$	0,12	
A à λ de travail	0,345	0,450

On admet que : $\frac{A \, \acute{e}talon}{A \, essai} = \frac{\rho \, (atrazine \, ; \acute{e}talon)}{\rho \, (atrazine \, ; essai)}$

14BIOPO1 Page : 4/7

<u>DOCUMENT 2</u>: Croissance de la souche de *Pseudomonas* sélectionnée dans différents milieux

La souche utilisée est inoculée dans différents milieux liquides et incubée 24 h à 30°C.

Tableau des résultats obtenus

	Après incubation			
	Expérience 1	Expérience 2	Expérience 3	
Milieux de culture	Milieu de base (M)	Milieu de base (M) + peptones	Milieu de base (M) + atrazine (C ₈ H ₁₄ CIN ₅)	
Aspect des tubes Limpide		Trouble	Trouble	

Composition du milieu de base (M) pour 1 litre (dissolution dans de l'eau déminéralisée)

Glucose (C ₆ H ₁₂ O ₆)	5 g
Sulfate de magnésium (MgSO ₄)	
Hydrogénophosphate de potassium (K ₂ HPO ₄)	
Dihydrogénophosphate de potassium (KH ₂ PO ₄)	1 g
Chlorure de sodium (NaCl)	5 g
Sulfate de fer (FeSO ₄)	10 mg
Chlorure de calcium (CaCl ₂)	10 mg
Mélange d'oligo-éléments (Mn, Mo, Co, Cu, Zn)	0,03 mg de chaque
pH = 7,1	

14BIOPO1 Page : 5/7

<u>DOCUMENT 3</u>: Dénombrement d'un stock de cellules décongelées par étalement sur gélose PCA

Mode opératoire

L'ensemble des manipulations est réalisé en zone d'asepsie.

Le stock, une fois décongelé, est soumis à une série de dilutions décimales en eau physiologique jusqu'à la dilution 10⁻⁷.

Le dénombrement est ensuite réalisé sur gélose PCA par étalement en surface de 0,1 mL de chacune des dilutions de 10⁻⁴ à 10⁻⁷ (1 boîte par dilution).

Les ensemencements réalisés sont incubés 48 h à 30°C en aérobiose. Le comptage des UFC en surface permet d'obtenir les valeurs ci-après.

Valeurs obtenues pour ce dénombrement :

Dilution	10-4	10 ⁻⁵	10 ⁻⁶	10 ⁻⁷
UFC comptées	indénombrable	280	24	4

Les dilutions contenant entre 10 UFC et 300 UFC sont exploitables.

Exploitation du dénombrement d'après la norme ISO 7218 d'octobre 2007 :

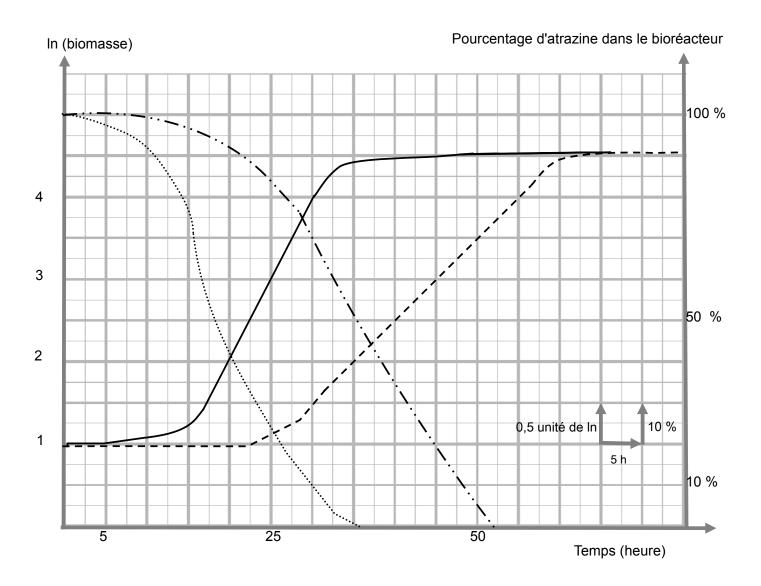
Equation aux grandeurs :
$$N = \frac{\Sigma c}{V \times 1.1 \times d}$$

- N: nombre d'UFC (Unités Formant Colonies) par mL de produit initial
- Σc : somme des colonies comptées sur les deux boîtes retenues de deux dilutions successives et dont au moins une contient au minimum dix colonies.
- V : volume de l'inoculum déposé dans chaque boîte (en mL)
- d : dilution correspondant à la première boîte retenue, avec l'inoculum le moins dilué.

Expression du résultat de mesure :

Le résultat est arrondi à deux chiffres significatifs et exprimé par un nombre compris entre 1,0 et 9,9 multiplié par la puissance de 10 appropriée.

Significations des sigles :


UFC = unité formant colonie

PCA = plate count agar, gélose classiquement utilisée pour le dénombrement des germes aérobies non exigeants

14BIOPO1 Page : 6/7

<u>DOCUMENT 4 :</u> Influence de la température sur la croissance et sur la dégradation de l'atrazine par la souche sélectionnée

<u>Légendes :</u>

14BIOPO1 Page : 7/7