BACCALAURÉAT TECHNOLOGIQUE

Série : Sciences et Technologies de Laboratoire

Spécialité : Biotechnologies

SESSION 2014

Sous-épreuve écrite de Biotechnologies

Coefficient de la sous-épreuve : 4

Ce sujet est prévu pour être traité en deux heures.

Les sujets de CBSV et de biotechnologies seront traités sur des copies séparées.

L'usage de la calculatrice est autorisé.

Ce sujet comporte 8 pages.

14BIOME3 Page : 1/8

CONTRÔLE DU LAIT DE VACHE DANS LE CAS DE MAMMITES BOVINES

En cas de développement d'une mammite (inflammation des glandes mammaires) chez une vache, la qualité du lait produit est affectée (teneur en matière grasse, teneur en protéine, teneur en lactose et concentration en ions).

Lorsque la mammite est d'origine infectieuse, un traitement antibiotique des animaux malades est nécessaire. L'éleveur se doit alors d'exclure le lait des vaches traitées afin qu'il ne soit retrouvé aucun antibiotique dans le lait commercialisé.

La qualité du lait est très contrôlée dans l'industrie laitière, car elle conditionne le bon déroulement des processus de transformation du lait en produits dérivés (yaourts, fromages...). En effet, une faible teneur en lactose limite le phénomène de coagulation des protéines lors de la fermentation par les bactéries lactiques. D'autre part, la présence d'antibiotique ralentit le développement bactérien nécessaire à la fermentation.

Avant chaque livraison, une entreprise spécialisée dans la production de dérivés laitiers doit réaliser plusieurs contrôles avant la transformation du lait dont :

- une détermination de la concentration massique en lactose;
- une recherche d'antibiotiques résiduels.

Ces contrôles qualités entraînent une longue immobilisation du lait avant transformation. Dans une démarche d'amélioration continue et de réduction du temps d'immobilisation du lait, un test alternatif de détection d'antibiotique est en cours de validation. Dans cette optique, la recherche d'antibiotique est réalisée par méthode classique microbiologique et méthode alternative de type immunochromatographique.

1. DOSAGE DU LACTOSE DANS LE LAIT DE VACHE

Le dosage du lactose par une méthode enzymatique est effectué sur le lait réceptionné par l'entreprise,. Le principe, le mode opératoire du dosage ainsi que les spectres d'absorption du NAD⁺ et du NADH,H⁺ sont présentés dans les **documents 1 et 2**.

- Q1. Montrer que ce dosage enzymatique fait appel à une méthode en point final.
- Q2. Expliquer le choix de la longueur d'onde de lecture de l'absorbance à 340 nm.
- Q3. Calculer, en g.L⁻¹, la concentration en lactose du lait testé.
- **Q4**. Exprimer le résultat de la concentration en lactose en g pour 100mL de lait, avec son incertitude, à l'aide du **document 3**, sachant que $u_c = 0,04$ g de lactose dans 100 mL de lait.
- **Q5.** Conclure, sachant que le lait utilisable par l'entreprise doit avoir une concentration en lactose comprise entre 4,5 et 5,0 g pour 100 mL de lait.

14BIOME3 Page : 2/8

2. DÉTECTION D'ANTIBIOTIQUES DANS LE LAIT DE VACHE PAR MÉTHODE MICROBIOLOGIQUE

Le laboratoire de contrôle recherche la présence d'antibiotiques dans le lait testé. Les principes de ces tests sont décrits dans les **documents 4 et 5**.

La méthode utilisée en routine dans le laboratoire de contrôle comporte deux étapes successives.

La première étape consiste en un test de détection par mesure de l'acidification.

- **Q6**. Après analyse du <u>document 4</u>, établir la composition qualitative des témoins positif et négatif.
- Q7. Interpréter les résultats des témoins.
- **Q8**. En déduire la présence éventuelle d'antibiotique dans le lait testé et conclure.

En cas de résultat positif, un test de confirmation par diffusion en gélose est réalisé.

- Q9. Expliquer le rôle des deux témoins présentés dans le document 5.
- Q10. Réaliser un schéma annoté de la boîte de Pétri après incubation.
- Q11. Analyser les résultats obtenus et argumenter pour justifier le rejet du lait par l'industriel.

3. DÉTECTION D'ANTIBIOTIQUES DANS LE LAIT PAR UNE MÉTHODE ALTERNATIVE

Un des enjeux pour l'entreprise est de réduire l'immobilisation du lait après livraison, due aux contrôles qualités. Le laboratoire met en place une technique alternative : le test Béta-Star[®] (Néogen), dont le principe est présenté dans le **document 6**.

Pour valider l'utilisation de ce test en routine, le laboratoire compare les résultats obtenus par test Béta-Star[®] avec ceux des tests classiques réalisés précédemment.

- **Q12**. Synthétiser par une représentation schématique légendée l'assemblage moléculaire qui se forme dans le cas d'un lait contenant un antibiotique lors de la première étape du test.
- **Q13**. Montrer comment le phénomène de compétition permet d'expliquer l'absence de bande au niveau de la zone test dans le cas d'un lait contenant un antibiotique.
- Q14. Analyser les résultats obtenus et conclure.

SYNTHESE

- **Q15**. Comparer le test Béta-Star[®] alternatif et les tests microbiologiques classiques. Argumenter quant au test le plus avantageux pour l'industriel.
- **Q16**. Rédiger une synthèse des résultats d'analyse du lait testé permettant de conclure sur l'utilisation possible ou non du lait analysé pour la fabrication de produits dérivés.

14BIOME3 Page : 3/8

DOCUMENT 1 : Dosage du lactose du lait par méthode enzymatique

(d'après la fiche technique Biosentec, coffret de dosage « lactose/galactose »)

Principe

La concentration en lactose est proportionnelle à la concentration de NADH,H⁺ formé

$$β$$
-gal

Réaction 1 | lactose + H $_2$ O \longrightarrow D-glucose + D-galactose

Gal-DH

Réaction 2 D-galactose + NAD $^+$ \longrightarrow D-galactonate + NADH + H $^+$

• NAD⁺: nicotinamide-adénine-dinucléotide

• NADH,H⁺: nicotinamide-adénine-dinucléotide réduit

• β -Gal : β -galactosidase

• Gal-DH: galactose-déshydrogénase

Préparation de l'échantillon de lait testé

Déprotéiniser l'échantillon de lait

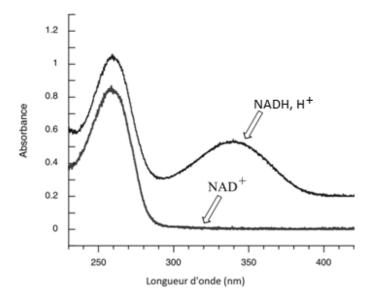
• Diluer l'échantillon au 1/100

Mode opératoire

Dans une cuve pour spectrophotomètre :

- Ajouter l'échantillon dilué, le tampon et la β-galactosidase.
- Mélanger et incuber 20 minutes entre 20°C et 37°C.
- Ajouter ensuite la galactose-déshydrogénase et le NAD⁺, en excès.
- Mélanger et incuber 30 minutes environ, entre 20°C et 37°C.
- Lire l'absorbance à 340 nm.
- Réaliser en parallèle le dosage à partir d'une solution étalon de lactose

Résultats


	Etalon	Lait testé
Absorbance à 340 nm	0,800	0,754

<u>Données</u>

 $\rho_{\text{(lactose ; étalon)}} = 0.5 \text{ g.L}^{-1}$

14BIOME3 Page : 4/8

DOCUMENT 2: Spectre d'absorption du NAD⁺ et du NADH,H⁺

DOCUMENT 3 : Expression du résultat de mesure (aide mémoire de métrologie)

L'incertitude élargie U est calculée en multipliant l'incertitude-type composée u_c par le facteur d'élargissement k associé à un niveau de confiance donné. La valeur de k généralement utilisée est de 2, ce qui correspond à un niveau de confiance d'environ 95 %.

L'incertitude élargie U est ensuite arrondie selon les cas :

- si le premier chiffre significatif est 1, 2 ou 3 : garder deux chiffres significatifs ;
- si le premier chiffre significatif est 4 ou plus : garder un chiffre significatif.

Dans certains cas, l'incertitude élargie U est directement donnée avec son niveau de confiance. Pour l'arrondissage du résultat, le dernier chiffre significatif doit être à la même position décimale que le dernier chiffre de l'incertitude élargie.

Grandeur mesurée = (valeur retenue ± U) unité

14BIOME3 Page : 5/8

DOCUMENT 4: Test d'acidification

Principe

Le lait testé est inoculé par une souche de *Geobacillus stearothermophilus*. En absence d'antibiotique, cette bactérie se multiplie dans le lait enrichi en nutriments et produit des composés acides. La production d'acides est comparée à celle de cultures témoins effectuées avec ou sans antibiotiques.

Mode opératoire

- Chauffer l'échantillon de lait 5 minutes à 80°C
- Ajouter l'extrait de levure (source de nutriments) et l'indicateur de pH
- Ajuster le pH à 7
- Ensemencer avec une souche de Geobacillus stearothermophilus
- Incuber 2h30 à 64°C

<u>Résultat</u>

échantillon de lait	lait témoin « positif »	lait témoin « négatif »	lait testé
Couleur du milieu après incubation	violet	jaune	violet

Données

L'indicateur de pH utilisé est le bromocrésol pourpre dont la variation de couleur en fonction du pH est donnée dans le tableau ci-dessous.

	pH ≤ 5,2	5,2 ≤ pH ≥ 6,8	pH ≥ 6,8
Bromocrésol pourpre	jaune	zone de virage	violet

Geobacillus stearothermophilus est sensible aux antibiotiques suivants : pénicilline G, tétracycline

14BIOME3 Page : 6/8

DOCUMENT 5 : Test de confirmation

Principe

Les antibiotiques éventuellement présents dans le lait diffusent du disque imprégné de lait vers la gélose et inhibent la croissance du microorganisme test. Il en résulte la formation d'une zone d'inhibition autour du disque imprégné de lait.

Mode opératoire

Sur un milieu nutritif solide coulé en boîte de Petri :

- Ensemencer le milieu par la souche de *Geobacillus stearothermophilus* de façon à obtenir des colonies jointives mais non confluentes.
- A la surface du milieu ensemencé, déposer 3 disques de papier filtre de 6 mm de diamètre préalablement imprégnés de :
 - Témoin 1 : lait stérile sans antibiotique
 - Témoin 2 : lait stérile contenant 0,5 µg.mL⁻¹ de pénicilline G
 - Lait testé
- Incuber 24 heures à la température optimale de l'espèce bactérienne utilisée.

Résultat

Echantillons de lait	Témoin 1	Témoin 2	Lait testé
Diamètre d'inhibition (en mm)	6	20	15

Données

Les échantillons positifs donnent des zones d'inhibition d'au moins 10 mm de diamètre.

Geobacillus stearothermophilus est sensible aux antibiotiques suivants : pénicilline G, tétracycline

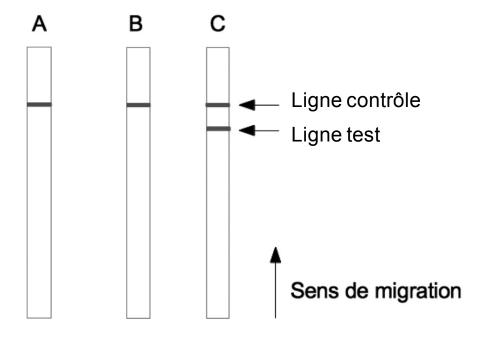
14BIOME3 Page : 7/8

DOCUMENT 6: Test Béta-Star® - méthode de type immuno-chromatographique

Principe - Mode opératoire

Le test Béta-Star[®] utilise un récepteur spécifique aux antibiotiques de la famille des bêta-lactamines, couplé à des particules d'or colloïdal, à l'origine d'une coloration rouge lorsqu'elles sont concentrées.

- 1ère étape : Un volume de lait à tester est incubé pendant 3 minutes dans un flacon contenant les récepteurs spécifiques liés aux particules d'or.
- 2ème étape : une bandelette immuno-chromatographique est alors plongée dans le mélange lait-récepteurs (obtenu à l'étape 1) et incubée 2 minutes. Durant les 2 minutes, le lait migre par capillarité sur le support pour atteindre deux lignes de capture :
 - la ligne test :


A l'emplacement de cette ligne se trouvent des molécules d'antibiotique immobilisées sur la bandelette. Les récepteurs « libres » (non liés aux antibiotiques) migrent sur la bandelette et se fixent sur les molécules d'antibiotique immobilisées.

- ✓ Une coloration rouge intense apparait en absence de bêta-lactamines.
 ✓ On n'observe pas de coloration en présence de bêta-lactamines dans le lait.
- la ligne contrôle :

L'apparition d'une coloration rouge permet de contrôler la validité du test.

Résultat

- Immuno-chromatogramme A: lait testé
- Immuno-chromatogramme B : témoin positif, lait contenant des bêta-lactamines
- Immuno-chromatogramme C: témoin négatif, lait ne contenant pas de bêta-lactamines

Page: 8/8 **14BIOME3**